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A B S T R A C T   

Large chest X-rays (CXR) datasets have been collected to train deep learning models to detect thorax pathology 
on CXR. However, most CXR datasets are from single-center studies and the collected pathologies are often 
imbalanced. The aim of this study was to automatically construct a public, weakly-labeled CXR database from 
articles in PubMed Central Open Access (PMC-OA) and to assess model performance on CXR pathology classi-
fication by using this database as additional training data. Our framework includes text extraction, CXR pa-
thology verification, subfigure separation, and image modality classification. We have extensively validated the 
utility of the automatically generated image database on thoracic disease detection tasks, including Hernia, Lung 
Lesion, Pneumonia, and pneumothorax. We pick these diseases due to their historically poor performance in 
existing datasets: the NIH-CXR dataset (112,120 CXR) and the MIMIC-CXR dataset (243,324 CXR). We find that 
classifiers fine-tuned with additional PMC-CXR extracted by the proposed framework consistently and signifi-
cantly achieved better performance than those without (e.g., Hernia: 0.9335 vs 0.9154; Lung Lesion: 0.7394 vs. 
0.7207; Pneumonia: 0.7074 vs. 0.6709; Pneumothorax 0.8185 vs. 0.7517, all in AUC with p < 0.0001) for CXR 
pathology detection. In contrast to previous approaches that manually submit the medical images to the re-
pository, our framework can automatically collect figures and their accompanied figure legends. Compared to 
previous studies, the proposed framework improved subfigure segmentation and incorporates our advanced self- 
developed NLP technique for CXR pathology verification. We hope it complements existing resources and im-
proves our ability to make biomedical image data findable, accessible, interoperable, and reusable.   

1. Introduction 

To improve prediction accuracy by artificial intelligence (AI), large 
chest X-ray (CXR) databases have been collected to train sophisticated 
deep learning models [1–5]. However, despite their well-documented 
successes, some critical challenges remain to limit the performance of 
the algorithms [6–8]. First, most CXR datasets were drawn from 
single-center studies. For example, NIH-CXR was collected from the NIH 
Clinical Center [2], and MIMIC-CXR was collected from Beth Israel 
Deaconess Medical Center [1]. Second, labels collected from existing 
datasets only focus on a few diseases of interest. A database containing 
many images for comprehensive concepts classes, including rare 

diseases, is highly demanded but less studied [9]. Finally, institutional 
policy often restricts liberal redistribution and reuse of important 
datasets. A recent example is the COVID-19 CXR dataset. The largest 
open-source database was launched around eight months after the 
outbreak of COVID-19 [10]. For these reasons, there is a critical need to 
quickly create a public CXR database to facilitate the development of 
advanced image analysis tools and decision support algorithms [11]. 

To reduce this barrier, we investigate a framework that can accel-
erate the automatic construction of CXR databases from PubMed Central 
Open Access Subset (PMC-OA) using a combination of natural language 
processing and image analysis. PMC-OA is an accessible digital re-
pository that archives full-text scholarly articles published in biomedical 
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and life sciences journals. To date, more than three million full-text 
articles have been added through the PMC [12,13]. Manuscript figures 
are of paramount interest because they often contain graphical images 
from CXR, CT, MRI, and ultrasound studies [14,15]. PMC also requires 
images to be supplied in an uncompressed high-resolution file format 
[16]. With an estimated 16 million figures (and subfigures) available, 
PMC promises substantial medical imaging data in various domains. 
More importantly, rare and new cases are strongly oversampled in the 
biomedical literature compared to clinical archives [17]. 

In this study, we hypothesize that we can obtain models with better 
performance on CXR pathology classification by using the weakly- 
labeled CXR extracted by our framework as additional training data 
(called PMC-CXR). Our previous work demonstrated that we could 
successfully construct a database for radiographs related to COVID-19 
from PMC and use it as additional training data to improve deep- 
learning models for COVID-19 detection [18]. However, the subfigure 
segmentation model used in the previous study requires improvement as 
it occasionally struggles to differentiate similar subfigures positioned 
closely together. For example, in some cases, the model incorrectly 
identifies the spine as empty space in AP chest X-rays, leading to the 
erroneous splitting of large figures into two subfigures. Furthermore, the 
method employed in the previous work to classify the pathology 
mentioned in the text also requires further refinement. This work ex-
tends the previous study but differs in threefold aspects. First, we 
developed a new and more accurate method for subfigure segmentation 
and modality detection [19]. Second, we applied Radtext to classify the 
assertion status of the CXR pathology mentioned in the text [20]. Third, 
we extensively validated the utility of the automatically generated 
image database on thoracic disease detection tasks, including Hernia, 
Lung Lesion, Pneumonia, and pneumothorax. We pick these diseases due 
to their historically poor performance in the NIH-CXR [2] and 
MIMIC-CXR [1] datasets. 

2. Materials and methods 

2.1. Materials 

We measure the Area Under the Curve (AUC) in distinct chest x-ray 
diagnosis models trained in three datasets: NIH-CXR dataset [2] (112, 
120 CXR Posterior-Anterior and Anterior-Posterior images from 30,805 
individuals), MIMIC-CXR dataset [1] (243,324 CXR Posterior-Anterior 
and Anterior-Posterior images from 227,827 studies), and 
newly-created PMC-CXR. More detailed summary statistics for the 

datasets are listed in Table 1. For a fair comparison, we used the stan-
dard training and testing split and added the additional data from 
PMC-CXR only to the training set. We used a Pair T-test to compare the 
difference between the two groups. 

2.2. The pipeline to extract CXR from PMC-OA 

Fig. 1 shows the overview of the proposed framework. First, we used 
the PubMed API (i.e., Entrez Programming Utilities) to retrieve PMC-OA 
articles with keywords mentioned in the titles and abstracts. Then, we 
extracted figures and associated captions from the input PMC-OA article 
and verified that the figure captions contained a positive mention of the 
given CXR pathology. This step ensures the image is “about” the CXR 
pathology of interest. Afterward, we separated the compound figures 
into subfigures and classified the figures into CXR and non-CXR. Finally, 
we created the PMC-CXR based on the following three criteria: (1) the 
caption contains a positive mention of the disease, (2) the figure/sub-
figure is a chest x-ray (CXR), and (3) the subfigure has a width-to-height 
or height-to-width ratio greater than 0.5. We then trained a deep neural 
network (DNN) with and without additional PMC-CXR. 

2.2.1. PMC articles retrieval 
We used the PubMed API (i.e., Entrez Programming Utilities or E- 

utilities) to retrieve PMC-OA articles with keywords mentioned in the 
titles and abstracts [21]. For example, the query term for hernia-relevant 
articles is “Hernia [Title/Abstract]”. PubMed uses Medical Subject 
Headings (MeSH terms) as a controlled vocabulary of biomedical and 
health-related terms to describe the subject of a journal article [22]. 
Therefore, the query automatically includes alternate spellings and 
MeSH terms related to “Hernia”, such as “Abdominal Hernia” and 
“Abdominal Wall Hernias”. The E-utilities retrieves PubMed Central 
identification (PMCID), the unique reference number assigned to every 
article accepted into PMC-OA. We then used PMCIDs to retrieve 
full-length articles in the BioC format [12]. The BioC format is a data 
structure in XML for text sharing and processing to facilitate the auto-
mated processing of full-text articles [23]. 

2.2.2. Figure and text extraction 
We parsed the PMC-OA articles in the BioC format to identify figures 

and their captions. Specifically, each figure block bears a caption, a label 
such as “Fig. 3”, and a figure internal identifier (fig-id). We then used the 
fig-id to collect the figures. It is worth noting that PMC requires images 
to be supplied in an uncompressed high-resolution file format [16]. 
Fig. 2 shows an example of a typical biomedical image in the article 
“Pneumonia in Normal and Immunocompromised Children: An Over-
view and Update” [24]. The examples contain figures and a figure 
caption, and text that describes the case with rich information. 

2.2.3. CXR pathology verification 
Not all images in a PMC-OA article are “about” the pathology of 

interest. Here, we hypothesize that the figure caption expresses the 
interpretation of the image. Therefore, we applied a Natural Language 
Processing technique to detect the pathology keywords in the figure 
caption and filter out CXR if its caption has no mention or negative 
mention of the CXR pathology keywords, such as “Hernia”. Specifically, 
we used the previously reported extraction tool (RadText) [20] devel-
oped ourselves. It was evaluated on the MIMIC-CXR dataset with five 
new disease labels we annotated in our previous work [20], and ach-
ieved highly accurate classification performances, with an average 
precision of 0.91, a recall of 0.94, and an F-1 score of 0.92. 

2.2.4. Subfigure separation 
The figures extracted from PMC-OA articles are usually compound 

and must be separated. In this study, we reused a deep learning model 
with 53 convolutional layers proposed by TY and YH to separate com-
pound figures [19]. In short, the model was pretrained on the 

Table 1 
Characteristics of NIH-CXR, MIMIC-CXR, and PMC-CXR.  

Disease Dataset Training Test 

Positive/negative Positive/negative 

Hernia  
NIH-CXR 141/86,383 86/25,510  
PMC-CXR 100/- –  
Total 241/86,383 86/25,510 

Lung Lesion  
MIMIC-CXR 6,511/233,410 121/3,282  
PMC-CXR 331/- –  
Total 6842/233,410 121/3282 

Pneumothorax  
NIH-CXR 2,637/83,887 2,665/22,931  
MIMIC-CXR 11,127/228,794 108/3295  
PMC-CXR 929/- –  
Total 34,693/312,681 2,773/26,226 

Pneumonia  
NIH-CXR 876/85,648 555/25,041  
MIMIC-CXR 16,880/223,041 342/3,061  
PMC-CXR 170/- –  
Total 17,926/308,689 897/28,102  
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Image-CLEF 2016 Medical dataset with an accuracy of 88.9%. We 
applied this model to the figures obtained by the previous steps. We 
discard subfigures with a width-to-height or height-to-width ratio of less 
than 0.5. 

2.2.5. Image modality classification 
Because many figures in PMC-OA articles are not CXR, we need to 

filter out non-CXR images. In this study, we applied a “double-checking” 
strategy, a standard practice to improve accuracy. Here, we used two 
models to check the model modality independently. The first model is a 
DenseNet-121 model [25] used in the study of Peng et al. [18]. The 
second is a fine-tuned ResNet-50 [26] on a newly created dataset. This 
dataset consists of 3901 figures (Table 2). Specifically, we randomly 
selected 1000 and 200 CXR images from NIH-CXR [2] and Litcovid [27], 
respectively. The non-CXR images were drawn from DeepLesion [3], 
Litcovid [27], DocFigure [28], and ImageCLEF 2016 [29]. 

The ResNet-50 used in this study is pretrained on ImageNet. We 
replaced the last classification layer with a fully connected layer with a 
sigmoid operation that outputs the approximate probability that an 
input image is a CXR or non-CXR. All images are resized to 224× 224×

3. The models were implemented by Keras with a backend of Tensor-
Flow. The proposed network was optimized using the Adam optimizer 
method [30]. The learning rate is 5× 10− 5. A stochastic image 
augmentation was applied to randomly transform a given fundus 
photograph, resulting in an augmentation view. In this work, we 
sequentially apply three simple augmentations: (1) random rotation 
between 00 and 100, (2) random translation: an image was translated 
randomly along the x- and y-axes by distances ranging from 0 to 10% of 

Fig. 1. The pipeline of collecting PMC-CXR from 
PMC-OA and evaluating its contribution to CXR pa-
thology detection. ① Retrieve articles with specific 
diseases from PMC-OA. ② Extract figures and their 
associated captions from the PMC-OA articles. ③ 
Verify if the caption positively mentions the CXR 
pathology of interest. ④ Separate compound figures 
into subfigures. ⑤ Detect the figure modality. To 
evaluate the contribution of PMC-CXR, we train a 
deep neural network (DNN) using the cohorts or the 
cohorts plus PMC-CXR.   

Fig. 2. An example of CXR with Pneumonia from the PMC-OA article “Pneu-
monia in Normal and Immunocompromised Children: An Overview and Up-
date” [24]. 

Fig. 3. Performance of Hernia and Lung Lesion detection on CXR. (a) Hernia detection on CXR. The models were trained on the NIH-CXR training set (left) and the 
NIH-CXR training set plus PMC Hernia CXR (right) and tested on the NIH-CXR test set. (b) Lung Lesion detention on CXR. The models were trained on the MIMIC-CXR 
training set (left) and MIMIC-CXR training set plus PMC Lung Lesion CXR (right) and tested on the MIMIC-CXR test set. 

Table 2 
Characteristics of the imaging modality classification dataset.  

Modality Data source Training Test 

CXR  
NIH Chest X-ray 799 201  
LitCOVID 160 40 

Others  
DeepLesion 815 185  
LitCOVID 160 41  
DocFigure 400 100  
PMC-OA 400 100  
ImageCLEF 2016 386 114 

Total  3,120 781  
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the width or height of the image, and (3) random flipping. The experi-
ments were performed on Intel Core i9-9960 X 16 cores processor and 
NVIDIA Quadro RTX 6000 GPU. 

2.3. CXR pathology detection and experimental settings 

Our experiments reported the Area Under the ROC curve (AUC). We 
used 200 bootstrap samples to obtain a distribution of the AUC and 
reported 95% confidence intervals. For each bootstrap iteration, we 
sampled n images with replacements from the test set of n images. We 
used the official release training, validation, and testing datasets for 
both datasets. We used a DenseNet-201 model pretrained on ImageNet 
as a classifier for chest X-ray images. The last classification layer was 
replaced with a fully connected layer with a sigmoid activation function. 
The images were resized to 224 × 224 × 3 before being fed into the 
model, which was implemented using Keras with a TensorFlow backend. 
The network was optimized using the Adam optimization algorithm 
[30] with a learning rate of 5× 10− 5. We trained the model for 15 
epochs. A model with the lowest validation loss is selected as the final 
model. The batch size is set to 96. To augment the data, we applied 
random rotations, translations, and flips to the images. The rotations 
were in the range of 0–10◦, the translations were up to 10% of the image 
width or height in either the x or y direction, and the flips were either 
horizontally or vertically. The experiments were performed on an Intel 
Core i9-9960 X cores processor and NVIDIA Quadro RTX 6000 GPU. 

3. Results 

3.1. The impact of PMC-CXR on CXR pathology detection trained on the 
single-source dataset 

In this work, we hypothesize that the additional training data 
extracted from biomedical articles can improve the performance of the 
deep learning model and reduce human effort. We first assess the impact 
of PMC-CXR on thoracic disease detection on CXR drawn from a single 
data source. Here, we chose the task of “Hernia” detection on NIH-CXR 
and “Lung Lesion” detection on MIMIC-CXR, because they had relatively 
small numbers of CXR in the datasets and are thus challenging to 
identify [2,31–33]. 

Fig. 3 shows the performance of Hernia and Lung Lesion detection on 
CXR. For Hernia detection, the model trained on NIH-CXR plus PMC 
Hernia CXR is significantly superior to the model trained on NIH-CXR 
only (0.9335 vs. 0.9154 in AUC, p < 0.0001). For Lung Lesion detec-
tion, the model trained on MIMIC-CXR and PMC Lung Lesion CXR also 
achieved higher AUC than its counterpart (0.7394 vs. 0.7207 in AUC, 
p < 0.0001). 

3.2. The impact of PMC-CXR on CXR pathology detection trained on 
multi-source datasets 

We then assess the impact of PMC-CXR on thoracic disease detection 

on CXR drawn from multiple data sources. For this purpose, we chose 
the tasks of Pneumonia and Pneumothorax detection because these two 
diseases are commonly annotated in NIH-CXR and MIMIC-CXR. 

Fig. 4 shows the results of pneumonia and pneumothorax detection 
tested on the NIH-CXR test set. In both cases, the model trained on the 
NIH-CXR plus PMC-CXR is superior to the model trained on the NIH-CXR 
only (pneumonia: 0.6506 vs. 0.6348 in AUC, p < 0.0001; pneumo-
thorax: 0.8423 vs. 0.8279 in AUC, p < 0.0001). For a fair comparison, 
we also examined whether the model could reach a higher performance 
using additional “real” positive CXR. For this purpose, we selected 
“Pneumonia” images from MIMIC-CXR and added them to the NIH-CXR 
training set. We observed that the model trained on a combination of the 
NIH-CXR and MIMIC pneumonia/pneumothorax CXR also had better 
performance (pneumonia: 0.6484 vs. 0.6348 in AUC, p < 0.0001; 
pneumothorax: 0.8431 vs. 0.8279 in AUC, p < 0.0001). More impor-
tantly, the model trained on NIH CXR plus PMC Pneumonia CXR is su-
perior to that trained on NIH CXR plus MIMIC Pneumonia CXR on 
Pneumonia detection, demonstrating the usefulness of our extracted 
PMC-CXR. 

Fig. 5 shows the pneumonia and pneumothorax detection results 
tested on the MIMIC-CXR test set. The model trained with additional 
PMC-CXR had better performance than that trained on MIMIC-CXR only 
(pneumonia: 0.6813 vs. 0.6709 in AUC, p < 0.0001; pneumothorax: 
0.7670 vs. 0.7517 in AUC, p < 0.0001). When we replaced the positive 
images from PMC-CXR with the positive images from NIH-CXR, the 
model also had superior performance to those trained on MIMIC-CXR 
only (pneumonia: 0.7074 vs. 0.6709 in AUC, p < 0.0001, pneumo-
thorax: 0.8185 vs. 0.7517 in AUC, p < 0.0001) and those trained on 
MIMIC-CXR plus PMC-CXR. 

Finally, we examined whether additional data PMC-CXR is necessary 
when we already have multi-source data by training two models: one 
using a combination of NIH-CXR and MIMIC-CXR, and the other using a 
combination of these datasets plus PMC-CXR. Fig. 6(a–b) shows that, 
when tested on the NIH-CXR for pneumonia detection, the model trained 
with additional PMC-CXR had better performance than that trained on 
the combination of NIH-CXR and MIMIC-CXR training sets (NIH-CXR 
test set: 0.6788 vs. 0.6640 in AUC, p < 0.0001). But when tested on the 
MIMIC-CXR test set, there is no significant difference. For pneumothorax 
detection, Fig. 6(c–d) shows that the model trained with additional 
PMC-CXR had better performance than that trained on the combination 
of NIH-CXR and MIMIC-CXR training sets (NIH-CXR test set: 0.8720 vs. 
0.8669 in AUC, p < 0.0001; MIMIC-CXR test set: 0.8202 vs. 0.7972 in 
AUC, p < 0.0001). 

3.3. Image modality classification 

A large portion of figures in the PMC-OA articles is not CXR. 
Therefore, an image modality classifier is needed to distinguish CXR 
from non-CXR figures. The full description is available in the Methods. 
The model achieved high accuracy (0.9987), sensitivity (1.0), and 
specificity (0.9981). 

Fig. 4. Performance of Pneumonia and Pneumo-
thorax detection on CXR tested on NIH-CXR test set. 
(a) Pneumonia detection on CXR. The models were 
trained on the NIH-CXR training set (left), NIH-CXR 
training set plus MIMIC Pneumonia CXR (middle), 
and NIH-CXR training plus PMC Pneumonia CXR 
(right). (b) Pneumothorax detection on CXR. The 
models were trained on the NIH-CXR training set 
(left), NIH-CXR training set plus MIMIC Pneumo-
thorax CXR (middle), and NIH-CXR training plus PMC 
Pneumothorax CXR (right).   
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4. Discussion 

There are many studies on mining figures within scientific docu-
ments [18,34–36]. However, constructing a large-scale medical imaging 
database from biomedical literature needs to be better studied, not to 
mention the associated information [18]. To bridge this gap, we 
designed a practical framework to extract medical images from PMC. In 
contrast to previous approaches that relied solely on the manual sub-
mission of medical images to the repository, figures and their accom-
panied figure legends are automatically collected using algorithms that 
integrate natural language processing and medical image analysis. We 
have shown that the model trained with PMC-CXR as the additional 
training data consistently achieved superior performance (Figs. 2–4). 
More importantly, we observed that, even though the additional data 
extracted using our proposed framework is less than the real data, the 
improvement in classification is similar to that obtained by adding the 
real data. This demonstrates the effectiveness of our flexible proposed 
framework, which allows for the easy extraction of data from relevant 
articles. As more relevant articles are published online, we can continue 
to expand our dataset using this framework. 

Beyond these immediate takeaways, there are several topics for 
further discussion. First, we have seen the success of “ImageNet” in the 
general domain [37]. ImageNet uses the hierarchical structure of 

WordNet [38], an extensive lexical database of English where nouns, 
verbs, adjectives, and adverbs are grouped into sets of cognitive syno-
nyms. Since the launch of ImageNet and the inaugural competitions 
using the database, many successful efforts have been using deep neural 
networks in a wide variety of computer vision tasks, providing an 
appreciation of the importance of hierarchical structures in improving 
model performance [39]. In the medical domain, there exist large public 
datasets of CXR [1,2,40]. Nevertheless, few collections consist of diverse 
CXR pathologies to effectively train a deep neural network for the 
general purpose of CXR understanding [41–43]. Our approach provides 
the potential to construct a large-scale CXR database quickly and 
accurately with comprehensive disease coverage and promote the per-
formance of current CXR analysis algorithms. 

Second, we highlight that, owing to the advantages of the Creative 
Commons license, our dataset will allow researchers to gain findable, 
assessable, interoperable, and reusable (FAIR) access to huge collections 
of CXR images along with the descriptive text. PMC provides rich re-
sources with a free and reusable license for secondary analysis [44,45]. 
To date, more than three million full-text articles have been added 
through the PMC [12,13]. Manuscript figures are of paramount interest 
because they often contain graphical images from CXR, CT, MRI, and 
ultrasound studies [14,15]. With an estimated 16 million figures (and 
subfigures) available, PMC promises substantial medical imaging data in 

Fig. 5. Performance of Pneumonia and Pneumo-
thorax detection on CXR tested on MIMIC-CXR test 
set. (a) Pneumonia detection on CXR. The models 
were trained on the MIMIC-CXR training set (left), 
MIMIC-CXR training set plus NIH Pneumonia CXR 
(middle), and MIMIC-CXR training plus PMC Pneu-
monia CXR (right). (b) Pneumothorax detection on 
CXR. The models were trained on the MIMIC-CXR 
training set (left), MIMIC-CXR training set plus NIH 
Pneumothorax CXR (middle), and MIMIC-CXR 
training plus PMC Pneumothorax CXR (right).   

Fig. 6. Performance of pneumonia (a–b) and pneumothorax (c–d) detection on CXR. The models were trained on the combination of NIH-CXR and MIMIC-CXR 
training sets (left) plus PMC Pneumonia/Pneumothorax CXR (right) and tested on the NIH-CXR and MIMIC-CXR test sets, respectively. 
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various domains. More importantly, rare and new cases are strongly 
oversampled in the biomedical literature compared to clinical archives 
[17]. As a result, medical imaging databases built from PMC will provide 
opportunities for the fast development of image-based models for 
detecting new diseases such as COVID-19. 

Furthermore, NIH-CXR, MIMIC-CXR, and PMC-CXR used the same 
automatic labeling algorithm. In radiology, we have seen the increasing 
use of NLP methods to automatically generate labels from text. This 
results in large annotated CXR datasets such as NIH-CXR, MIMIC-CXR, 
and CheXpert. While these datasets are widely used for developing DL 
models, obtaining CXR with rare or new diseases is challenging. To this 
end, our solution provides an alternative way to quickly harvest cases 
with CXR pathologies. More importantly, the performance of the labeler 
has been validated for quality [1,2,40,46] and adopted a reliable ground 
truth. Experiments show that PMC-CXR significantly improves the CXR 
pathologies classification across two large chest X-ray datasets. 

One limitation of our proposed framework is that the labels for the 
captions may contain noises. For example, the caption of a compound 
figure may include several items. Our current method can only provide a 
unitary label for the whole caption. Fig. 7 shows an example of a typical 
biomedical image in the article “Congenital Hemidiaphragmatic Agen-
esis Presenting as Reversible Mesenteroaxial Gastric Volvulus and Dia-
phragmatic Hernia: A Case Report” [47]. While we can separate the 
figure into three subfigures, we incorrectly label subfigure A as a CXR 
with Hernia. This error may degenerate the model training and the 
testing performance. However, the experimental results demonstrate 
that such noises do not significantly degenerate the effectiveness, i.e., 
the additional data generated by our framework still improves the per-
formance. In the future, we will segment the captions into fine-grained 
ones and align them to each subfigure. This will ensure we can generate 
more precise labels for subfigures. 

The other limitation of using medical literature is the high level of 
heterogeneity presented in different sources. For example, figures may 
be collected from various perspectives and locations, resulting in sig-
nificant differences in their feature domains. In the future, we plan to 
address this issue by using techniques such as domain adaptation with 
contrast loss to align domains [48], and improve the effectiveness of the 
figures in classification tasks. 

In conclusion, we have developed an end-to-end framework, a first- 
of-its-kind, to automatically extract CXR images from PMC-OA. Our 
proposed framework offers improved subfigure segmentation and in-
corporates our advanced self-developed NLP technique for CXR pa-
thology verification. The method will avoid the considerable questions 
of the ownership, control, security, and privacy of biomedical data. We 
have performed several experiments to prove that creating additional 
training data from biomedical articles can improve the performance of 
the deep learning model. While this project focuses on CXR images, we 
expect that our approach could apply to other specialties like derma-
tology, ophthalmology, and pathology. We hope this framework can 
generate additional data to facilitate deep learning model development 
and evaluation, educate medical students and residents, and help to 
evaluate findings reported by radiologists. It may also have positive 
feedback and encourage researchers to dedicate their resources to the 
open research questions identified and contribute their image data and 
resources to establishing high-quality benchmarking data sets. 

Data availability 

The first dataset is provided by the NIH Clinical Center and is 
available through the NIH download site: https://nihcc.app.box.co 
m/v/ChestXray-NIHCC. The second dataset MIMIC-CXR is also pub-
licly available on PhysioNet[49,50] https://www.physionet.org/conten 
t/mimic-cxr-jpg/. 
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